Dynamics of bolaamphiphilic fluorescent polyenes in lipid bilayers from polarization emission spectroscopy.
نویسندگان
چکیده
The rotational motions of the biamphiphilic polyenes (bolapolyenes) dimethyl all-(E)-octacosa-10,12,14,16,18-pentaenedioate (DE28:5) and dimethyl all-(E)-tetratriaconta-13,15,17,19,21-pentaenedioate (DE34:5), with head-to-head distances of 34 and 42A, respectively, have been examined by fluorescence anisotropy methods. The membrane-spanning bolapolyenes, which contain a central emitting pentaene group tethered to two methoxycarbonyl opposite polar heads by symmetric C(8) (DE28:5) and C(11) (DE34:5) polymethylene chains, were dispersed in lipid bilayers of DPPC or DMPC, and the stationary and picosecond-resolved emission was recorded as a function of temperature. In fluid-phase DMPC bilayers, three relaxation times could be determined, assigned to fast (0.2 and 2ns) single-bond isomerization processes localized on the alkyl chains, and to whole-molecule oscillations ( approximately 11ns), respectively. The anisotropy decay parameters were further analyzed in terms of a diffusive model for wobbling in a Gaussian ordering potential, to assess the anchoring effect of the symmetric polar heads. In this way, the average rotational diffusion constant of the bolapolyenes, D( perpendicular), could be estimated as 0.022-0.026rad(2) ns(-1) (DMPC bilayers, 35 degrees Celsius), a value that is only 1/3 of that corresponding to the related pentaene fatty acid spanning a single membrane monolayer. In contrast, the amplitude of the equilibrium orientational distribution (theta(half-cone) approximately 50 degrees ) is very similar for both the transmembrane and the single-headed polyenes. The reorientational oscillations of the central emitting group in the bolapolyenes necessarily would produce large-amplitude (2-5A) and very fast (ns) translational motions of the polar heads.
منابع مشابه
Simulation of Rotational Diffusion and Hydration of Laurdan in a Dppc Bilayer
SIMULATION OF ROTATIONAL DIFFUSION AND HYDRATION OF LAURDAN IN A DPPC BILAYER Ryan Frei Department of Physics and Astronomy Bachelor of Science We have used molecular dynamics simulations to investigate the rotational diffusion and hydration of Laurdan (2-dimethylamino-6-lauroylnaphthalene) in liquid and gel dipalmitoylphosphatidylcholine bilayers at temperatures above and below the phase trans...
متن کاملFluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS).
We characterize a novel fluorescence microscope which combines the high spatial discrimination of a total internal reflection epi-fluorescence (epi-TIRF) microscope with that of stimulated emission depletion (STED) nanoscopy. This combination of high axial confinement and dynamic-active lateral spatial discrimination of the detected fluorescence emission promises imaging and spectroscopy of the...
متن کاملLipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis.
The interaction of free fatty acids with cell membranes and lipid bilayers was studied by monitoring the emission polarization changes of the fluorescent probes 1,6-diphenyl-1,3,5-hexatriene (DPH) and 8-anilino-1-naphthalene sulfonate (ANS). It was found that cis unsaturated fatty acids incorporated into plasma membranes reduced DPH and increased ANS polarization, while trans-unsaturated and sa...
متن کاملMolecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملThe complex nature of calcium cation interactions with phospholipid bilayers
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluoresc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical chemistry
دوره 122 1 شماره
صفحات -
تاریخ انتشار 2006